Coverage for qubalab/objects/image_feature.py: 93%
164 statements
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-31 11:24 +0000
« prev ^ index » next coverage.py v7.6.10, created at 2025-01-31 11:24 +0000
1from __future__ import annotations
2import geojson
3import uuid
4import math
5import numpy as np
6import geojson.geometry
7from typing import Union, Any
8import rasterio
9import rasterio.features
10import shapely
11from .object_type import ObjectType
12from .classification import Classification
13from .geometry import add_plane_to_geometry
16_NUCLEUS_GEOMETRY_KEY = 'nucleus'
19class ImageFeature(geojson.Feature):
20 """
21 GeoJSON Feature with additional properties for image objects.
23 The added properties are:
25 - A classification (defined by a name and a color).
27 - A name.
29 - A list of measurements.
31 - A type of QuPath object (e.g. detection, annotation).
33 - A color.
35 - Additional geometries.
37 - And any other property.
38 """
40 def __init__(
41 self,
42 geometry: geojson.geometry.Geometry,
43 classification: Union[Classification, dict] = None,
44 name: str = None,
45 measurements: dict[str, float] = None,
46 object_type: ObjectType = ObjectType.ANNOTATION,
47 color: tuple[int, int, int] = None,
48 extra_geometries: dict[str, geojson.geometry.Geometry] = None,
49 id: Union[str, int, uuid.UUID] = None,
50 extra_properties: dict[str, Any] = None
51 ):
52 """
53 Except from the geometry and id parameters, all parameters of this
54 constructor will be added to the list of properties of this feature
55 (if provided).
57 :param geometry: the geometry of the feature
58 :param classification: the classification of this feature, or a dictionnary with the
59 'name' and 'color' properties defining respectively a string
60 and a 3-long int tuple with values between 0 and 255
61 :param name: the name of this feature
62 :param measurements: a dictionnary containing measurements. Measurements
63 with NaN values will not be added
64 :param object_type: the type of QuPath object this feature represents
65 :param color: the color of this feature
66 :param extra_geometries: a dictionnary containing additional geometries
67 that represent this feature
68 :param id: the ID of the feature. If not provided, an UUID will be generated
69 :param extra_properties: a dictionnary of additional properties to add
70 """
71 props = {}
72 if classification is not None:
73 if isinstance(classification, Classification):
74 props['classification'] = {
75 "name": classification.name,
76 "color": classification.color
77 }
78 else:
79 props['classification'] = {
80 "name": classification.get('name'),
81 "color": classification.get('color')
82 }
83 if name is not None:
84 props['name'] = name
85 if measurements is not None:
86 props['measurements'] = ImageFeature._remove_NaN_values_from_measurements(measurements)
87 if object_type is not None:
88 props['object_type'] = object_type.name
89 if color is not None:
90 props['color'] = color
91 if extra_geometries is not None:
92 props['extra_geometries'] = {k: add_plane_to_geometry(v) for k, v in extra_geometries.items()}
93 if extra_properties is not None:
94 props.update(extra_properties)
96 super().__init__(
97 geometry=add_plane_to_geometry(geometry),
98 properties=props,
99 id=ImageFeature._to_id_string(id)
100 )
101 self['type'] = 'Feature'
104 @classmethod
105 def create_from_feature(cls, feature: geojson.Feature) -> ImageFeature:
106 """
107 Create an ImageFeature from a GeoJSON feature.
109 The ImageFeature properties will be searched in the provided
110 feature and in the properties of the provided feature.
112 :param feature: the feature to convert to an ImageFeature
113 :return: an ImageFeature corresponding to the provided feature
114 """
115 geometry = cls._find_property(feature, 'geometry')
116 plane = cls._find_property(feature, 'plane')
117 if plane is not None:
118 geometry = add_plane_to_geometry(geometry, z=getattr(plane, 'z', None), t=getattr(plane, 't', None))
120 object_type_property = cls._find_property(feature, 'object_type')
121 if object_type_property is None:
122 object_type_property = cls._find_property(feature, 'objectType')
123 object_type = next((o for o in ObjectType if o.name.lower() == str(object_type_property).lower()), None)
125 args = dict(
126 geometry=geometry,
127 id=cls._find_property(feature, 'id'),
128 classification=cls._find_property(feature, 'classification'),
129 name=cls._find_property(feature, 'name'),
130 color=cls._find_property(feature, 'color'),
131 measurements=cls._find_property(feature, 'measurements'),
132 object_type=object_type,
133 )
135 nucleus_geometry = cls._find_property(feature, 'nucleusGeometry')
136 if nucleus_geometry is not None:
137 if plane is not None:
138 nucleus_geometry = add_plane_to_geometry(nucleus_geometry, z=getattr(plane, 'z', None), t=getattr(plane, 't', None))
139 args['extra_geometries'] = dict(nucleus=nucleus_geometry)
141 args['extra_properties'] = {k: v for k, v in feature['properties'].items() if k not in args and v is not None}
142 return cls(**args)
144 @classmethod
145 def create_from_label_image(
146 cls,
147 input_image: np.ndarray,
148 object_type: ObjectType = ObjectType.ANNOTATION,
149 connectivity: int = 4,
150 scale: float = 1.0,
151 include_labels = False,
152 classification_names: Union[str, dict[int, str]] = None
153 ) -> list[ImageFeature]:
154 """
155 Create a list of ImageFeatures from a binary or labeled image.
157 The created geometries will be polygons, even when representing points or line.
159 :param input_image: a 2-dimensionnal binary (with a boolean type) or labeled
160 (with a uint8 type) image containing the features to create.
161 If a binary image is given, all True pixel values will be
162 considered as potential features. If a labeled image is given,
163 all pixel values greater than 0 will be considered as potential features
164 :param object_type: the type of object to create
165 :param connectivity: the pixel connectivity for grouping pixels into features (4 or 8)
166 :param scale: a scale value to apply to the shapes
167 :param include_labels: whether to include a 'Label' measurement in the created features
168 :param classification_names: if str, the name of the classification to apply to all features.
169 if dict, a dictionnary mapping a label to a classification name
170 :return: a list of image features representing polygons present in the input image
171 """
172 features = []
174 if input_image.dtype == bool:
175 mask = input_image
176 input_image = input_image.astype(np.uint8)
177 else:
178 mask = input_image > 0
180 transform = rasterio.transform.Affine.scale(scale)
182 existing_features = {}
183 for geometry, label in rasterio.features.shapes(input_image, mask=mask, connectivity=connectivity, transform=transform):
184 if label in existing_features:
185 existing_features[label]['geometry'] = shapely.geometry.shape(geometry).union(
186 shapely.geometry.shape(existing_features[label]['geometry'])
187 )
188 else:
189 if isinstance(classification_names, str):
190 classification_name = classification_names
191 elif isinstance(classification_names, dict) and int(label) in classification_names:
192 classification_name = classification_names[int(label)]
193 else:
194 classification_name = None
196 feature = cls(
197 geometry=geometry,
198 classification=Classification.get_cached_classification(classification_name),
199 measurements={'Label': float(label)} if include_labels else None,
200 object_type=object_type
201 )
203 existing_features[label] = feature
204 features.append(feature)
206 # Ensure we have GeoJSON-compatible geometries
207 for feature in features:
208 feature['geometry'] = geojson.mapping.to_mapping(feature['geometry'])
210 return features
212 @property
213 def classification(self) -> Classification:
214 """
215 The classification of this feature (or None if not defined).
216 """
217 if "classification" in self.properties:
218 return Classification(self.properties['classification'].get('name'), self.properties['classification'].get('color'))
219 else:
220 return None
222 @property
223 def name(self) -> str:
224 """
225 The name of this feature (or None if not defined).
226 """
227 return self.properties.get('name')
229 @property
230 def measurements(self) -> dict[str, float]:
231 """
232 The measurements of this feature.
233 """
234 measurements = self.properties.get('measurements')
235 if measurements is None:
236 measurements = {}
237 self.properties['measurements'] = measurements
238 return measurements
240 @property
241 def object_type(self) -> ObjectType:
242 """
243 The QuPath object type (e.g. detection, annotation) this feature represents
244 or None if the object type doesn't exist or is not recognised.
245 """
246 return next((o for o in ObjectType if o.name.lower() == str(self.properties['object_type']).lower()), None)
248 @property
249 def is_detection(self) -> bool:
250 """
251 Wether the QuPath object type (e.g. detection, annotation) represented by this
252 feature is a detection, cell, or tile.
253 """
254 return self.object_type in [ObjectType.DETECTION, ObjectType.CELL, ObjectType.TILE]
256 @property
257 def is_cell(self) -> bool:
258 """
259 Wether the QuPath object type (e.g. detection, annotation) represented by this
260 feature is a cell.
261 """
262 return self.object_type == ObjectType.CELL
264 @property
265 def is_tile(self) -> bool:
266 """
267 Wether the QuPath object type (e.g. detection, annotation) represented by this
268 feature is a tile.
269 """
270 return self.object_type == ObjectType.TILE
272 @property
273 def is_annotation(self) -> bool:
274 """
275 Wether the QuPath object type (e.g. detection, annotation) represented by this
276 feature is an annotation.
277 """
278 return self.object_type == ObjectType.ANNOTATION
280 @property
281 def color(self) -> tuple[int, int, int]:
282 """
283 The color of this feature (or None if not defined).
284 """
285 return self.properties.get('color')
287 @property
288 def nucleus_geometry(self) -> geojson.geometry.Geometry:
289 """
290 The nucleus geometry of this feature (or None if not defined).
291 It can be defined when passed as an extra_geometry with the 'nucleus'
292 key when creating an ImageFeature, by defining the 'nucleus_geometry'
293 property of an ImageFeature, or when passed as a 'nucleusGeometry'
294 property when creating an ImageFeature from a GeoJSON feature.
295 """
296 extra = self.properties.get('extra_geometries')
297 if extra is not None:
298 return extra.get(_NUCLEUS_GEOMETRY_KEY)
299 return None
301 def __setattr__(self, name, value):
302 if name == 'classification':
303 if isinstance(value, Classification):
304 self.properties['classification'] = {
305 "name": value.name,
306 "color": value.color
307 }
308 else:
309 self.properties['classification'] = value
310 elif name == 'name':
311 self.properties['name'] = value
312 elif name == 'measurements':
313 self.properties['measurements'] = ImageFeature._remove_NaN_values_from_measurements(value)
314 elif name == 'object_type':
315 if isinstance(value, str):
316 self.properties['object_type'] = value
317 elif isinstance(value, ObjectType):
318 self.properties['object_type'] = value.name
319 elif name == 'color':
320 if len(value) != 3:
321 raise ValueError('Color must be a tuple of length 3')
322 rgb = tuple(ImageFeature._validate_rgb_value(v) for v in value)
323 self.properties['color'] = rgb
324 elif name == 'nucleus_geometry':
325 if 'extra_geometries' not in self.properties:
326 self.properties['extra_geometries'] = {}
327 self.properties['extra_geometries'][_NUCLEUS_GEOMETRY_KEY] = add_plane_to_geometry(value)
328 else:
329 super().__setattr__(name, value)
331 @staticmethod
332 def _remove_NaN_values_from_measurements(measurements: dict[str, float]) -> dict[str, float]:
333 return {
334 k: float(v) for k, v in measurements.items()
335 if isinstance(k, str) and isinstance(v, (int, float)) and not math.isnan(v)
336 }
338 @staticmethod
339 def _to_id_string(object_id: Union[int, str, uuid.UUID]) -> str:
340 if object_id is None:
341 return str(uuid.uuid4())
342 elif isinstance(object_id, str) or isinstance(object_id, int):
343 return object_id
344 else:
345 return str(object_id)
347 @staticmethod
348 def _find_property(feature: geojson.Feature, property_name: str):
349 if property_name in feature:
350 return feature[property_name]
351 elif 'properties' in feature and property_name in feature['properties']:
352 return feature['properties'][property_name]
353 else:
354 return None
356 @staticmethod
357 def _validate_rgb_value(value: Union[int, float]) -> int:
358 if isinstance(value, float):
359 value = int(math.round(value * 255))
360 if isinstance(value, int):
361 if value >= 0 and value <= 255:
362 return value
363 raise ValueError('Color value must be an int between 0 and 255, or a float between 0 and 1')